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APPLICATION OF A THEOREM ON THE ZEROS OF STOCHASTIC
FUNCTIONS TO TURBULENCE MEASUREMENTS

H. W. Liepmanni

1. The Number of Null-Positions of a Stochastic Function /119*

Let J(t) be a stochastic function of time t. The temporal mean value

J(t) may be zero and the process described by J(t) stationary, i.e., the corre-

lation function
1p(T) = J(t)J (t + r)

depends only on i and not on t. How often does the function J(t) assume the

value Con the average in the time unit? Questions of this kind have been dis-

cussed by Rice [1]2.

Under certain suppositions ( = O) is valid for the special mean number of

zero-positions NO, in the unit of time

'o -V -(O) (1)

Since for a stationary process with $(T) is valid:

"() \ J

it follows

JN " (2)
0 r

2
J2

and thus one has a relation between the mean number of zero-positions and the

mean square of the derivative. A spectral density F(n) is defined in such a /120

way that

,(O) = J2 =F(n) dn

then

i a) lf F(n) cos (2 z nT) dn
is valid, 0

iDaniel Guggenheim Aeronautical Laboratory, California Institute of Technology.
*Numbers in the margin indicate pagination in the foreign text.
2Additional references are cited in Rice's work.
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and O
- 4"(0) 24 fn2 (n) d n.

.o (3)

Then it follows also from (1) that:

fn F(n) dn

N =4 o=4n2.

F(n) dn

The relation (3) is analogous to the simple harmonic oscillation, for which
2 2

N = 4n

The assumptions which lead to the relationship (1) could be indicated by a

simple consideration. For a stricter derivation, see Rice (loc. cit).

Let p(C)dE be the probability of finding J(t) at time t in the interval

5, C + dC. Now if one does not ask about the duration of the interval 5, E + dS,

but only about the number of transits, then it obviously is immaterial how long

the function remains through one transit in the interval. In order to find the

probability of one passage, so as to find the probability J(t) in the interval

5, 5 + dE, at any given time one must therefore divide by the time T which J(t)

spends during this passage in dS. The relation between the number of transits

and the mean square of the derivative J' (t)2 then naturally occurs such that

the time T depends on J'(t). Let p(C, n)dgdn be the probability that J(t) is in

the interval 5, 5 + dC and simultaneously J'(t) is in the interval fl, n + dn.

Then it is probable that J(t) exceeds the interval with certain derivative n

p ($, ) dj d1 pI

since

Id

Furthermore if one integrates fn over all possibilities, one obtains the number /21

of transits by C per time unit:

+00 (4)

-00

From equation (4), (1) follows directly under the assumption, that p(, n) is a

Gaussian distribution and that this is process stationary, i.e., J(t)J'(t) = 0.
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It is essential to note that J(t) and J'(t) are statistically independent,

that is, that p( , n) is a product of a function of C and a function of q. If

one writes p(C, q) = l(C) m(n), then from (4) it follows that

For a Gaussian distribution the disappearance of the correlation JJ' suffices.

In general JJ' = 0 indeed is necessary, but not sufficient for the statistical

independence of J(t) and J'(t).

For linear processes one can show in general that J(t) and J'(t) have

Gaussian distribution. For the radiation of a black body, one finds such

evidence in von Laue [2] and the corresponding acoustical and electrical case

is found, e.g., in Rice's cited work. The possibility of equation (1) being

used in turbulence measurements to my knowledge, was first mentioned by Dryden.

Turbulent fluctuations however obeyla nonlinear equation, and consequently

cannot be included in a Gaussian distribution in the same way, as e.g., in

radiation theory. On the contrary, the derivative of a turbulent rate component

certainly is not disturbed in a Gaussian way. That follows essentially from the

motion equations in the form given to them by Karman and Howarth [3] and has

been confirmed by Townsend's [4] measurements. Yet it is interesting to test

how far this - in general weak - deviation from a Gaussian distribution operates

in the number of zero-positions and how widely the number of zero-positions

characterizes a turbulent fluctuation field.

From a technical measurement point of view, it is a very attractive method

since, with a counting arrangement, direct averages can be taken. over almost I

arbitrarily long times.

2. Relations to Isotropic Turbulence /122

Under isotropic turbulence, as is known from G. I. Taylor, one understands

a fluctuation field, in which functions of the velocity components ui(x k , t) and

their derivatives are invariant as regards the translation, rotation and

reflection of the coordinate system. In experiments one produces such a field

by letting as uniform and turbulence-free a stream as possible flow through a

grating at constant speed U. The field in the wake of the grating is then
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nearly isotropic and homogeneouslin miniature. The components of the variation

rate at a fixed point u.(t) can then be identified with the stochastic function
1

J(t). For technical measurement it is simplest to investigate the component

ui(t) in the direction of the mean velocity U.

The result for the mean square of the derivative dul 2 that was obtained
dt

from counting the zero-positions, could be compared with the results of the two

followingl independent methods: namely, first with the direct measurement of

7 du by differentiation by means of a capacity-resistance arrangement (cf.

Townsend [4]) and also with measurement of the spectral density F(n) from the

(dul 2 by graphic interpretation of f n 2 F (n )d n corresponding e qu a t ion (3 ) c an

be acquired.

So far we have considered only time functions. For the dynamics of

turbulence, however, the spatial correlation functions are especially important.

These spatial correlation functions according to V. Karman are best introduced

in the form of correlation tensors.

In isotropic, homogeneous turbulence then, a scalar function, e.g., f(x),

determines the correlation tensor of the second order:

BI - i (xi, t) _u (Xk', I)

The relation between the time correlation function p(T) and f(x) in general is

obtained by setting: x

d d-U-
dt dx (6)

i.e., it is assumed, that the turbulence is transported undistorted with the /123

speed U. This substitution - even for small fluctuations - to my knowledge

never has been proved to be theoretically flawless, and it can rightly be

doubted [5]. The few measurements that permit a comparison between space and

time correlation, admittedly for the present have shown no systematic differences,

and the same holds also for measurements in this work. If one assumes meanwhile

that the (6) substitutions are allowed, then one can write:

U d ,Ut / U ) =du -U () U2
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X is a quantity which is characteristic for the dissipation of the turbulent

energy. The dissipation equation in isotropic turbulence, as is known, runs

(see e.g., [3])
3 di 15- I u

2 dx (7)

and hence the quantity X can be determined by measurements ofl turbulence fading.

Such measurements also were carried out, and the values of X so obtained could

be compared with the mentioned measurements ofl dl . In the following -
\ dt -d

with the reservation mentioned - also for the quantity U~1 d 2 the

1
customary short - has been written.

3. Measuring Apparatus

Windtunnel

The measurements were conducted in a small duct with a cross-section of

20"*20". The degrees~of turbulence of this duct without grating is small:

[-] -'3-10 - 4

A grating of 1.27 cm mesh width was used to produce isotropic turbulence. The

measurements were done with flow rates of 630 and 1130 cm/sec.

Hot Wire Arrangement

The fluctuations of the flow rate were absorbed with help of hot wires and

compensated amplification. Wollaston wire with a 1.25-10 -4 cm thick platinum

core was used. Wires were 1-2.cm long. The platinum wire, after dissolving the /124

silver coating, was soldered on the tips of fine sewing needles. The arrangement

is true in frequency within 2% between 2 and 10,000 Hz.

Counting Device

The zero-positions of the amplifier current were taken up with a photo-

multiplier cell onto the screen of a cathode ray oscillograph and by means of a

gear reducer every 29 = 512th zero-position counted.
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Differentiation

It was possible to differentiate the anplifier current by means of a

capacity-resistance system similar to that of Townsend [4]. The degree of

amplification here is proportional to the frequency between 2 and 104 Hz.

Measurement of the Spectral Density

The spectral distribution of the amplifier current could be measured with

aid of a Hewlett-Packer wave analyzer with constant band width.

Corrections

The results have to be corrected for the full length of the hot wire. For

that it means that not u (t) is measured, but

1 (, y) dy
0

where 1 is the length of the hot wire. For isotropic turbulence the correction

formulas can be specified. For the intensity measurements, one has

u = u measured. +[ -

for the A measurements

2 =2 measured 1- 2] mit G ) 4 ( 0 ).

It is clear that the correction formulas make sense only when the corrections

are small, so that one comes out with relatively crude values for A and G in

correction terms. With the measurements in this work I/X < 0.5; G was estimated

from the spectrum: G - 10-13. In addition the corrections were determined

experimentally by use of wires of various lengths. For the higher velocity /125

(1130 cm/sec), it gave: (G-3)/18 = 0.46. This value agrees closely enough with

the measurements of G.

The counting device moreover must be corrected for the ultimate resolution

power. At present this correction seems to be the least certain and therefore

contributes to the fact that not the deviations in the results of this counting

method from therother methods can be regarded as real. The probability of

having two hull-positions tightly in succession can be stated. A suitable

formula is found in Rice (loc. cit.). The medial number ND of dual zero-positions

within the small time T is given by
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ND = No [G - 1] (N.T)2 .

If one identifies T with the resolution process, then one obtains a

-correction formula for the measured number of zero-positions. The determination

of T causes difficulties. The previous determinations yielded for the arrange-
-4

ment T 'Y 10-4 sec. So the correction is small. But the value is not too

reliable and certainly must be delineated\better. Besides, still another

correction is added, in that on occasion very rapid transits through zero do not

get counted. In this respect surely the arrangement still is improvable.

4. Results

X or better 12 was measuredlby the different methods at speeds of 630 and

1130 cm/sec at a distance of 81 mesh-widths behind the screen. The results are

summarized in the table.
TABLE

S2.10 cm2

Differen- Dissipa-
.... Zero-positions Spectrum tiation tion

1130 cm/sec 1- 7.3 15.3 12.9 13.9

630 cm/sec 23.9 25.8 18.7 22.4

The measurements are scarcely more precise than ±10% in X 2. More exact

limits of error cannot be stated at present. One finds namely that the measured

values can be periodically reproduced more exactly, but then often are changed

systematically by several percent. How farlsuch changes are occasioned by the /126

apparatus, e.g., by irregularities in.the grating, still has to be checked.

Within these limits of error, as is evident from the table, no systematic

difference between the results of the various measuring methods can be detected

for sure. For the higher velocity the counting method indeed gives too large a

value for X2, but not for the lower velocity. This result;makes one suspect

that the resolution power of the arrangement has not yet been considered

sufficiently.
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Neither the influence of a deviation from Gaussian distribution, nor a

difference between time and space differentiation can therefore be detected for

sure within these limits of error.

At the California Institute of Technology at present, a detailed investi-

gation of isotropic turbulence is in progress for the National Advisory Committee

for Aeronautics. The question discussed here came out in the scope of this

work.

The help of K. Liepmann, J. John Laufer and F. K. Chuang in this work is

gratefully acknowledged.
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